MIDPOINT, MEDIAN, \& RIGHT BISECTOR

LEARNING GOALS

Students will:

- Learn how to find the midpoint of a line segment.
- Learn how to find the median of a triangle.
- Learn how to find a right bisector.

MIDPOINT

The...

| Slope A measure of the steepness of a line | slope $=\frac{\text { Formula }}{\text { run }}$ |
| :---: | :---: | :---: | :---: |

Can be used to find the...

| Midpoint point that divides a line |
| :---: | :--- |
| |$\left.| \begin{array}{l}\frac{x_{1}+x_{2}}{2}, \frac{\text { Formula }}{y_{1}+y_{2}}\end{array}\right)$

How might you use the calculation of a midpoint in your lives?

EXAMPLE 1: FIND A MIDPOINT
There are two hospitals located at coordinates $A(3,5)$ and $B(11,14)$. The city wants to build a new ambulance station halfway between the two hospitals. Determine the coordinates of this location.

Method 1: Calculate the slope

$$
\begin{aligned}
\text { rise } & =y_{2}-y_{1} & \text { run } & =x_{2}-x_{1} \\
& =14-5 & & =11-3 \\
& =9 & & =8
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
M=(x, y) & =\left(x_{1}+\frac{\text { run }}{2}, y_{1}+\frac{\text { rise }}{2}\right) \\
& =\left(3+\frac{8}{2}, 5+\frac{9}{2}\right) \\
& =(3+4,5+4.5) \\
& =(7,9.5)
\end{aligned}
$$

Method 2: Use the Midpoint formula.

$$
\begin{aligned}
& M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
&=\left(\frac{14}{2}, \frac{19}{2}\right) \\
&=\left(\frac{3+11}{2}, \frac{5+14}{2}\right)
\end{aligned}
$$

Midpoint
Median to the midpoint of the opposite side.
Vertex A point that represents the intersection of sides.

EXAMPLE 2: MEDIAN OF A TRIANGLE
Determine an equation for the median from vertex C for the triangle with vertices $C(5,2), A(-3$, $3)$, and $B(2,-5)$.
1 Find the coordinates of the midpoint between $A+B$.

$$
\begin{aligned}
(x, y) & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{-3+2}{2}, \frac{3+(-5)}{2}\right) \\
& =\left(-\frac{1}{2},-\frac{2}{2}\right) \\
& =\left(-\frac{1}{2},-1\right)
\end{aligned}
$$

2) Now find the slope of
the line segment CM.

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-(-1)}{5-\left(-\frac{1}{2}\right)} \\
& =\frac{3}{\frac{11}{2}} \\
& =3 \times \frac{2}{11} \\
& =\frac{6}{11}
\end{aligned}
$$

3) Use the point CorM) to find the y-intercept using the equation of a line.

$$
y=\frac{6}{11} x-\frac{8}{11}
$$

$$
\begin{aligned}
y & =\frac{6}{11} x+b \\
2 & =\frac{6}{11}(5)+b \\
2 & =\frac{30}{11}+b \\
2-\frac{30}{11} & =b \\
\frac{22}{11}-\frac{30}{11} & =b \\
b & =-\frac{8}{11}
\end{aligned}
$$

| Right
 Bisector | The line that passes through the midpoint of a line
 segment and intersects it at a 90° angle. |
| :--- | :--- | :--- | :--- |
| Equidistant | Equally Distant. |

EXAMPLE 3: EQUATION OF A RIGHT BISECTOR
Two schools are located at points $\mathrm{P}(-1,4)$ and $\mathrm{Q}(7,-2)$ on a town map. The school board is planning a new sports complex to be used by both schools. The board wants to find a location equidistant from the two schools. Use an equation to represent the possible locations for the athletic complex.
A point can be equidistant from the schools anywhere along the right bisector.

1) Find the slope of the line $P Q$

- Perpendicular lines have slopes that are the negative reciprocals of each other.

2) The right bisector passes through the midpoint of PQ

- Provides a point along
 the line required to find the y-intercept.

3) Find the y-intercept using the slope and the midpoint.
